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On Solutions to the Linear Boltzmann
Equation with General Boundary Conditions
and Infinite-Range Forces
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This paper considers the linear space-inhomogeneous Boltzmann equation in a
convex, bounded or unbounded body D with general boundary conditions.
First, mild L'-solutions are constructed in the cutoff case using monotone
sequences of iterates in an exponential form. Assuming detailed balance rela-
tions, mass conservation and uniqueness are proved, together with an H-
theorem with formulas for the interior and boundary terms. Local boundedness
of higher moments is proved for soft and hard collision potentials, together with
global boundedness for hard potentials in the case of a nonheating boundary,
including specular reflections. Next, the transport equation with forces of infinite
range is considered in an integral form. Existence of weak L!-solutions are
proved by compactness, using the H-theorem from the cutoff case. Finally, an
H-theorem is given also for the infinite-range case.

KEY WORDS: Linear Boltzmann equation; transport equation; initial
boundary value problem; boundary conditions; entropy function; H-functional;
detailed balance relation; mild L'-solution; higher moments; infinite-range
forces.

0. INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical
modeling in physics. This paper studies that space-inhomogeneous trans-
port equation for a distribution function f(x, v, r) (describing, for instance,
a neutron distribution) depending on a space variable x = (x|, x,, x,)
in a nonmultiplying, nonabsorbing (i.e., purely scattering) body D, and
depending on a velocity variable v= (v, v,, v;) € ¥=R> and time variable
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teR,. Here we assume D=D to be a closed, bounded or unbounded,
(strictly) convex domain in R*® with (piecewise) C'-boundary I'=0D. In
absence of external forces the transport equation in strong form is

g—]:(x, v, t)+v-grad, f(x,v, 1) =(Qf }(x, v, t) (0.1)

x e D\T, vel, teR,
supplemented with initial data
lim f(x, v, t) = Fy(x, v), xeD, veV {0.2)
t{0
and some boundary conditions.
In earlier papers'''?) I considered periodic boundary conditions (in

x). In the present paper the boundary conditions are chosen (cf. ref 4
p- 107) as

] fOv =] RO o ¥) (%7 ) Y] Y’ (0.3)
nv' >0
xel, nv <0, t=0

where n=n(x) is the unit, outward, normal vector at xeI'=0D, and
R is a given nonnegative function. For instance, in the case of specular
reflection, then

R(x, v > v)=46(v—v + 2n(nv')) (0.4)
where d is the usual Dirac measure, and in the case of diffuse reflection
R(x, v - v)=|nv| M(x, V) (0.5)

where M(x, v) is a local Maxwell distribution function.
For a nonabsorbing boundary the function R in (0.3) is supposed to
satisfy (cf. ref. 4)

f R(x,vV -»v)dv=1, xel, nv>0 (0.6)

ny <0
Sometimes we write the boundary conditions (0.3)

fx, v, 1) = j W(x, v —v) f(x, V', 1) dV’ (0.7)

nv’' >0

xel, nv <0, t=0
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with

Wi(x, v’ﬁv)z%R(x, v =), nv' >0, av<0 (0.8)

The collision term in (0.1) can be written (cf. ref. 4)

@ v. =] | D00 v 06V, =% v,) S5 %, 0]
x B(6, w) d6 d{ dv, (0.9)

where ¥ >0 is a known distribution function. Here, v and v, are the
velocities before, and v’ and v, are the velocities after, a binary collision.
S is the impact plane

{(r,0):0<r<R 0<{<2n}
which also can be parametrized by the usual solid-angle representation
{(6,0:0<0<8,0< <2}

In the cutoff case, S is bounded, that is, R < oo, or 6 < m/2; but in the case
of infinite-range forces, S is the whole plane, i.e., 8 =7/2. The function B is
given by

or
B(6 = —
(0, w)=wr 7

where r=r(0, w) is computed through the relevant law of interaction, and
w=|v—v_|. (For details, see refs. 4 and 15; see also ref. 11).

In many cases of physical interest the function B(6, w) has a nonin-
tegrable singularity for 6 = n/2; for instance, with inverse kth power forces,
where

B(6, w)y=w"b(0) (0.10)
with y=(k—5)/(k—1),3<k < oc, and
b(0)=O((r/2 —0) e+ g n2-

(cf. ref. 4 or ref. 15). For that reason most authors have only dealt with
the cutoff case, R < oo, or §<n/2, including forces of finite range in the
collision term (for a discussion of such work, see ref. 11).

The purpose of this paper is to prove the existence of solutions to the
linear Boltzmann equation with quite general boundary conditions, first in
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the cutoff case, and then without cutoff using an H-theorem. That generalizes
results in refs. 11-13 for the periodic boundary case.

The space domain D is in Sections 1-4 supposed to be bounded and
(strictly) convex, but in Section 5, D is allowed to be unbounded. In
Section 1, first mild L'-solutions are constructed in the cutoff case
using iterates in an exponential form. Then mass conservation and
uniqueness are proved, assuming detailed balance relations inside D and at
the boundary. Section 2 contains an H-theorem for the solution from
Section 1 in the cutoff case under detailed balance. In Section 3 first local
boundedness in time for higher moments is proved for soft and hard collision
potentials in the cutoff case, assuming a “nonheating boundary,” and then
global boundedness of higher moments is proved for hard potentials in
the detailed balance case. Section 4 proves the existence of L!-solutions to
the equation in an integral form for the noncutoff case, including infinite-
range forces, and also an H-theorem for this case. Finally, in Section 5
the results are generalized to unbounded domains D, giving results about
existence, uniqueness, entropy, and higher moments, first in the cutoff case
and then also for infinite-range forces.

1. L'-SOLUTIONS IN THE CUTOFF CASE

In this section the space domain is supposed to be compact {cf.
Sections 0 and 5).
In the case of cutoff in the impact parameters, ie., R< o or §<7n/2,

the collision term (0.9) in Eq. (0.1) can be separated into two terms, “a

ain term” and “a loss term.” A common way to write the collision term
g Y

c (4.1
is

(@)%, v, )= | K(x,v =) f(x, v, )V = L(x,¥) fx, v, 1) (L1)

where
Lix, v):j K(x, v - V') dv' (12)
v

The collision frequency L is coupled to the functions y and B in (0.9) by
the relation

L v = [ wixv,) B, w) do a av, (13)

Vs

where w=|v—v,|. [In earlier papers,“' I used another notation with
cross sections X, and X, where K(x,v ->v)=¥|X(x,v—~vy} and



Linear Boltzmann Equation 407

L(x, v)=|v|] Z(x, v).] We assume (for simplicity) that the collision kernel K
vanishes on I" and outside D, i.e.,

K(x,v -v)=0 (1.4)
for x e R*\D®, where D°= D\I. Then also
L(x,v)=0, xe RH\ DO, veV (1.5)
Furthermore, assume that
Fy(x,v)=0, xeR»\D, veV (1.6)

Notation. Let
r,=r_(v)={xel;n-v>0}

I'_=r_(v)y={xel;n-v<0}

where n=n(x) is the unit, outward normal.
Let, for given xe D\I'_, ve V,

ty=ty(x, v)=inf{s > 0; x —sve R\ D} (1.7)

representing the time for a particle going from the boundary to the point
x with velocity v.

In this section the linear Boltzmann equation (0.1)-(0.3) with (0.6),
(1.1), and (1.2) is studied in two integrated forms, the mild form [Eq. (1.9)
below], and the exponential form (1.10), which both formally can be
derived from the equations above. Using, for xe D, veV, teR,, the

notation Fy ,v) 0<r<
X—1v,v), < t
ﬂ&w0={° St

1.
f(X‘le,V,l—tb), [>1, ( 8)

where x, =x—1,ve I'_(v), we have for the mild form
S0 % =T, 0+ [ (QN)(x—(1=5)%, v, 5) ds (19)
0

and for the exponential form

fx, v, t)=F(x,v, 1) exp [—f’ Lx—{t—s)v,v) ds]
+£:exp[—th(x—«(t—-s) v, v)ds:,

xJFVK(x—(t—r)v, Vo v) fX— (1—1) v, V', 7) dv' de

xeD, vel, teR. (1.10)
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In connection with the equations above, we also employ the following
related problem, with given functions g, F, and A

)
T v, 1)+ v+ rad 06, v, )+ L5, ¥) /0531
= g(x, v, ), xeD\I, veV, teR,
f(x,v,0)=Fy(x, V), xeD, veV (1.11)
f(x, v, ty=h(x,v,t), xel' _(v), veV, teR,

Together with this problem, we also have the two forms analogous to (1.9)
and (1.10). The function f is called a mild solution of (1.11) if, for re R,
ae (x+1tv,v)eDxV

Sf(x+tv,v, l)+'[ L(x+sv,v) f(x+sv,v,8)ds
0

= F(x+1tv,v, t)+j g(x+sv,v,5)ds (1.12)
0
where
~ Fo(x —tv,v), 0<e<t
F(x, v, 1) = olx—1v,v) b
h(X—=t,v,v,t—1,),  [>1,

Analogously, f'is said to satisfy the exponential form of (1.11) if, for re R,
ae (x+1tv,v)eDxV,

f(x+1tv, v, t)=F(x+tv,v, t)exp [——J L(x+sv,v) ds]
0

t
+ftexp|:——f L(x+sv,v)ds]-g(x+rv, v, T)dt (1.13)
0 T

We have the following lemma concerning Eqgs. (1.12) and (1.13).

Lemma 1.1. Let L(#)=L(x+1tv,v)el] (R,) and g(r)=
g(x+1tv,v,t)e L _(R,). Then fis a mild solution of (1.11) if and only if

loc

the exponential form (1.13) holds.

Proof. For the case 0<#<¢,, see Lemma 1.2 in ref. 11, where I used
a Taylor expansion for exp(-) to get the proof. For ¢>¢, use, instead
of F,, a function A(y, v, s), constant for y=x+sv, 0 <s<t—1¢,, such that

Z(yba v, I — fb)=h(y/5, v, t— tb)
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where y,=x+(t—1t,)vel (v), xeR\D, veV. Then [cf (1.12)],
F(x+4tv,v,t)=h(x, v, 0) for t>1,. For an extensive discussion about solu-
tions to equations in mild and exponential forms, see ref 14 (see also
refs. 3,9, 10 and 16 concerning solutions satisfying boundary condi-
tions). |

To construct solutions to the linear Boltzmann equation with general
boundary conditions, iterate functions f,=f,(x,v,t), n=0,1,2,.., are
defined recursively as follows [cf. (0.8)]:

folx, v, 1) =0, xeR3 veV, teR,

Foir®n v )= [ WX, ¥ V) [R5 V' 1) Y

nv' >0

X, _(v), nv <0, reR,

fn+1(xs v, t)=7n+1(x9 v, [) cXp l:_le(x_(t——s) v, V) ds:l

T

ﬂ—ftexpl:—jlL(x—(z—“s)v,v)ds:“ Kx—(t—1t)v,v —>v)
X fux—(t—1)v,v,1)dV dt
xe D\I"_(v), vel, t>0 (1.14)
where

Fo(x —1v,v), 0<rgy,
fn+1(x~tbv7v5[—tb)’ t>tb

7n+1(x3 \& [):{

Let also, for simplicity,

fAx, v, 1) =0, xeR(\D, veV, teR,, neN (1.15)

Now we first formulate a monotonicity result for the iterates.

Lemma 1.2. If F,, K, and W are nonnegative functions, then the
iterates f, defined by (1.14)-(1.15) satisfy

for1( v, 1) = F(x, v, 1), neN, xeR? veV, teR, (1.16)

Proof (cf. Lemma 1.1 in ref. 11). By induction and (1.14) one finds
that the sequence {d,}7_,, where d,=f, ,— f,, together with {d,}=_,,
d,=7,,.—f, are nonnegative. [
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Then we can formulate an existence theorem about mild solutions to
the initial-boundary problem. As usual, L' (D x V) denotes the almost
everywhere nonnegative functions in L'(D x V).

Theorem 1.3. Assume that R(x, v —v), L(x,v), and K(x,v - V)
are nonnegative, measurable functions, such that (0.6), (1.2), and (1.4)
hold, and L(x,v)e L} (D x V).

If Foe L', (D x V), then there exists a global mild solution (i.e., defined
for 1>0) to the problem (0.1)-(0.3) with (1.1) and (1.6). This solution

satisfies

j[f(x,v,t)dxdmj j Fo(x,v)dxdv, 1eR,  (L17)

DYV D

If
L(x,v) f(x,v, 1)e L' (Dx V) (1.18)

then the trace of the solution f satisfies the boundary condition (0.3) for
teR,,ae (x,v)el'xV.

Proof. Define iterates f,,, n=0, 1, 2,..., by (1.14). If, for a given func-
tion f,,, L(x, V) f,(x,v, ) e L'(Dx V' x [0, T]), T>0, then by Lemma 1.1.
the following (mild) equation holds, for a.e. x, ve Dx V, teR, :

frass v 0+ [ L= (=0 v v fys(x— (=) vov ) de

= f, 1%V, t)+j[f Kx—(t—1)v,vov)f(x—(—-1)v,V,1)dV dt

oYV

(1.19)

Changing variables x+—x+ v in (1.19) and differentiating along the
characteristics, one finds that, for e [0, T], a.e. (x,v)e R> x R?,

d
E(fn+l(x+[va V’ [))+L(X+lv9 v)fn+1(x+tv> V7 t)

=j KX+ 1%,V = V) f(X + 1V, V', 1) dV’ (1.20)

¥V

Supposing that L(x, v) f,(x, v, 1)e L' (D x Vx [0, T]) and |nv| f,(x, v, t)€
L' (I, xVx[0,T]), then by Green’s identity***) and a change of
variables,
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[ fevtevndxave [ [ [ £ 00w 1) Invl dodvdr
DYV

oYvir,

+£)t fD JVL(X’ V) foi(x, v, 1) dx dv de
= fD JVFO(X, V) dx dv+jol fV Jpr, Jur1(X, v, 7) |0v| do dv dr

+ fo L, fv fV K(x, v/ > v) [,(x, V', 1) dv' dx dv du (121)

where do represents the surface measure on I

Here the first and third terms on the right-hand side are finite by
assumption, and the second term can be transformed, using (0.6), (0.8),
and (1.14),

J.tj f Sur1(X, ¥, 7) |nv| do dv dr

= f j ” R(x, vV = v) f(x, ¥, 1) Inv'| dV' do dv dz
nv<0
nv' >0

:jf J (X, V', 1) V| do dv' dr < 0 (1.22)

by assumption. Then all three positive integrals on the left-hand side of
(1.21) are finite, which gives the induction step. So (1.21) holds for all
nz=0.

Now, using (1.2) and Lemma 1.2,

LZJ J j K(x, v = v) f,(x,v, 1) dv dx dv dr
[T e fstn vy v

= ([ [ Lol o= forr(x v )] dxdvae <0 (123)
0vYDYV
and also, using (1.21) and (1.22),
jtf j Sri1(X, v, 7) Inv| do dv dt
ovVIr_

_Lj JVJ Sor1(X, v, 7) [nv| do dv dr

-J H L% % 0) = f (% v, ©)] V] dodv de <O (1.24)
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Then, using (1.21), (1.23), and (1.24),

| [ feitevndxavs] [ Fxvdxdy,  neN  (125)

By Levi’s theorem on monotone convergence there exists a function

f(x,v,t)= lim f,(x,v,1), xeD, vel, teR, (1.26)

which is a mild solution to the linear Boltzmann equation in the exponen-
tial form (1.10), and also satisfies the boundary condition (0.3) for
(x,v,1)e I'x VxR, such that one side of (0.3) exists.

To get the existence of a boundary trace of the solution f we use a
trace theorem, Proposition 3.3, Chapter XI, in ref. 9. We can formulate it
for our purposes: Suppose f and Lf belong to L' (D x V). Then f has
a unique trace f*. Furthermore, the Green’s identity holds for f, if
f(x,v, t) Inv| e L"(I"x V' x [0, T]).

Using this proposition together with (1.17) and (1.18), the existence of
a trace follows. Furthermore, let n — oo in (1.14b) with (0.8); then, by
monotone convergence, the solution f satisfies the boundary condition (0.3)
for teR,, ae. (x,v)e(I'x V). So Theorem 1.3 follows. ||

Remark. The iterate function f,, (x, v, ) defined in (1.14) has a
natural physical meaning. It represents a distribution of particles which
have undergone at most # collisions inside D or at the boundary I” in the
time interval (0, ¢). The difference f,, , — f, gives the distribution of par-
ticles with exactly # collisions. Then f=1im,, _, ., f, represents the distribu-
tion of particles with at most denumerably many collisions for > 0.

Assumption. 1In the rest of this paper we suppose that there is a
detailed balance relation (or reciprocity relation) for binary collisions inside
D between particles with density function f and particles with density
function y, ie., we assume that there exists a function E= E(v)>0 such
that (cf. ref. 4, p. 170)

K(x,v—v') E(v)=K(x, Vv - V) E(V), xeD\I, v,v eV (1.27)
Using (1.1), (1.2), and (1.27), one finds that the function E= E(v) satisfies
(QE)(x,v,1)=0 (1.28)

so E(v) is an equilibrium solution to Eq. (0.1) if Fy(x, v) = E(v) and if E(v)
satisfies the boundary condition (0.3). Another way to formulate the
detailed balance relation (1.27) is

Y(x, v,) E(v)=y(x, v,) E(V) (1.29)
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An important example with detailed balance is given by a local Maxwellian
function

P(x, vy) = X(x) exp(—cm, |v,|?)

where X is a function of the space variable x, ¢ is a positive constant, and
m, is the mass for a particle with density function . Then (1.29) holds
with

E(v)=aexp(—cm |v|?)

where a is a positive constant and m is the mass of a particle. This is so
because of the energy conservation law for a binary collision.

In the following we also assume that there exists a function
Eb=E®%(x,v)>0, giving a detailed balance relation at the boundary, which
can be written®

Inv'| R(x, v/ —v) E%(x, v') = |nv| R(x, —v— —v') E®(x, —V)
nv' >0, nv <0 (1.30}
One finds, by straightforward calculations using (0.6), that such a function

E®(x, v) satisfies the boundary condition (0.3). We assume in the following
that [cf. (1.27)]

E°(x,v)=E(v), xel, veV (1.31)

Then E = E(v) is a stationary solution to the linear Boltzmann equation in
the strong form (0.1) with (0.2) and (0.3), and also to the equation in the
mild form (1.9) and in the exponential form (1.10).

In the case of detailed balance (1.27) and (1.30) with (1.31) we can
now prove that equality holds in (1.17), giving mass conservation, and also
that the solution in Theorem 1.3 is unique (in the relevant L'-space).

Theorem 1.4. Assume that the detailed balance relations (1.27)
and (1.30) with (1.31) hold, where E(v)eL' (Dx V) is an equilibrium
solution satisfying

K(x,v->Vv)EN)el' (DxVxV) and lnv| E(v)e L' (I'x V)
(1.32)

(A) If f=f(x,v,t) is the solution given in Theorem 1.3, then

| I 7w nax dv=| | Fxvidxav,  1eR,  (133)
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(B) Moreover, if f=f(x,v,t) is a (mild) solution to the problem
(0.1)-(0.3) satisfying the exponential form (1.10) and

jD fyf(x, v, ) dx dvsfbj Fo(x, v) dx dv (1.34)

then

Sl 0=7(,-1) ae.inDxV, teR,
Proof. (A) We use a cutoff in the initial value function,
F}(;(X: V) = min(FO(x’ V), D E(V)), p= 1> 29 39 (135)

and construct the iterate functions f2(x,v,?) for n=1, 2, 3,..., using the
initial function F§. By induction and elementary calculations one finds that

fox, v, 1)< p- E(v), xeD, veV, teR,, npeN (136)

By Theorem 1.3 the increasing sequence {f?}> | has a pointwise limit
(when n — o) satisfying

fr(x, v, 1) = lim f2(x,v, )< p-E(¥), peN (1.37)

n— oo

Now we use Eq. (1.21) for the iterates 7,

UV L’ﬂarxarwj;fyjr+ v nv| do dv de
+L:JDJVLf§;dedvdr
:JDL/ngxdv+LZJVL_ 2 |nv| do dv dr

+jof | fVngdxdv'dvdr
DYV

Here, using (1.32) and the dominated convergence theorem

n-» o0

fim L up 72, nv] do dv de

f’ [ jr 17 |nvl do dv dx

lim L’J Jr Sh . Inv| do dvdr
n—> O Vv -
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and
Tim L | | Lo dxavas
= LIJ J Lf?dx dvdr
DYV
= fim jo JD J,, jy Kf? dx dvdv' de
Then

jDJprdxdu lim JDJVf’;HdxdvszfVngxdv, peN

n— oo

Using (1.35) and the monotone convergence theorem, the mass conserva-
tion relation (1.33) follows, when p — oo, so statement A is proved.

(B) Compare the function /= f(x,v,t) with the iterate functions
fo=Jux, v, 1) defined in (1.14). By induction, using (1.10) and (1.14), one
finds that

SX v, 1)< F(x, v, 1), xeD, veV, teR neN

+
30

Sx,v, )= lm f(x,v, )< f(x,V, 1)

and
flx, v, 1)— f(x, v, 1) <0, xeD, veV, teR,
But, by A and (1.34),

ijVfdxdv=JDJVF0dxdv>J _[VdedV

SO

U (f = F)dx dv>0

Then for >0

FC =11 ae.inDxV §

822/59/1-2-27
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Remark. The mass conservation and uniqueness results in
Theorem 1.4, which are improvements of corresponding results in ref. 11,
can also be obtained without detailed balance assumptions, using other
types of assumptions on the functions B and i in the collision term (cf.
ref. 5 and also Section 3).

The results in Theorem 1.4 are also easily obtained if (1.18) holds and
S(x,v, 1) [nv] e LY(I'x V'x [0, T]); let n— oo in the Green’s identity (1.21).

2. THE H-FUNCTIONAL IN THE CUTOFF CASE

An H-functional Hg(f), which is a (negative) entropy functional, can
be defined by
He(N0)=] | fxv loglftx v )EMIdxdv (1)
where D° = D\I', D compact, and E(v) is a given function, (see, e.g., refs. 16
and 17). As usual, we define 0log 0=0. Analogously, we also define an
(integrated) relative H-functional for the boundary I'=0D (cf. ref 4,
p. 138),
t
HE(NO = [ [ fx,v, 1) loglf(x, v, Y E0)I(mv) do dv e (22)
ovYrJv
where nv>0on I', and nv<OQ on I'_.

The main result of this section is given in Theorem 2.1, which is an H-
theorem for our solution f to the linear Boltzmann equation under detailed
balance and general boundary conditions. From this theorem it follows
that the H-functional (2.1) for our solution is nonincreasing in time,

He()()<Hg(F),  teR, (23)

Such H-theorems, usually formulated as in (2.3), have been proved in
various situations; for instance, by Voigt!!® for linear operators, by
Arkeryd™ for the nonlinear, space-homogeneous Boltzmann equation,
and by Cercignani®® including the boundary, generalizing a boundary
H-theorem by Darrozes-Guiraud. The proof of our theorem combines the
methods in refs. 1, 4, and 16.

Theorem 2.1. Let f=f(x,v,t) be the mild solution of problem
(0.1)—(0.3) given in Theorem 1.3, and let the detailed balance relations
(1.27) and (1.30) with (1.31) hold, together with (1.32). If H(F,) exists,
then the relative H-functional H.(f)(¢) in (2.1) exists for £>0, and it is
nonincreasing in time. Moreover,

He(£)0) = HeFo) < | Ne(/)oy de+ [ Ny(H@de  (24)
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where

1

NN =53] | | Koxvov)Em)
J(x, v, ¢) f(x,v,t):l
x[ Ev)  E()
fx, v, 1) fx, v, 1) ,

x[log E() —log EV) ]dxdvdv

and

V=3 [ R v o) v B

nv' >0

GV, 1) f(x, v, 1)
X[ Ev) | E() }

[ v fEV, D)
x| log

E() —log ) ]do’dvdv

Proof. We shall use the elementary inequality
zlogzzz—1, forz>0
with equality if and only if z= 1. With z= f/E, one finds that
Slog(f/E)2f—E
with equality in (2.7) if and only if f = E. With
Slog(fIE) = f log * (f]E)— f log ™ (f/E)

this gives
O0<flog (fIE)< flog*(f/E)—f+E
Therefore
Sflog=(fIE)e L' (Dx V)
if

Sflog*(fIE)e L' (Dx V) and EeL' (DxV)

417

(2.5)

(2.6)

(2.7)

(2.8)



418 Pettersson

To prove Theorem 2.1, we start with a special case having a (double)
change in the initial value function. Let, for p, j=1,2, 3,...,

) |
FB/(x, v) = Fj(x, V)+}E(V), xeD, veV (2.9a)

where
F2(x, v) =min(Fy(x, v), pE(v)) (2.9b)

If f7/ = fPI(x, v, t) is the mild solution from Theorem 1.3 with initial value
F?/, then equality holds in (2.4), i

Hp(f?/)(t)— Hg(FB7) = jNE(fN r)dr+f Ne(fi)e) de (2.10)

To prove this statement, we start with the iterates /7, n=0, 1, 2,..., and
fF=lim, ,  f7, using the initial value function F§. Now let

F2I(x, ¥, 1) = f2(x, V, 1) +1,E(V) (2.11a)

Then the increasing sequence { %/}, also converges pointwise (when
n— o0} to a function

fPx, v, 1) = fP(x, v, t)+Jl~_E(v) (2.11b)

which by linearity is a mild solution corresponding to the initial value
function F5-/.

Now we get from {1.20) in Section 1, using differentiation along the
characteristics, that, for a.e. (x,v, f)e R*x R*x [0, T],

d .
7 (Pl (x+1v,v, t))=J Kx+1v,v o v) folx+tv,v,t)dv
14

—L(X+1tv,v) f2 (X+1v, v, 1)

Multiplying this equation with {1+1log[f%/ (x+1v,v,1)/E(v)]} and
using (1.2), one has

d XY, Y, t))}
dl[ n+1(x+tv V, )10g< E(V)

- f [K(X+ v,V = v) frl(x+1tv, ¥, 1)

—K(x+1tv,vov') f27 (x+1v,v,1)]

PT (X4 1V, Y, 1) ,
X [1 +log< E0) )} dv

ae (x,v,1)eR*xR3x[0, T], T>0.
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Then, integrating

L:JRJR}---dxdvdr

and using a Green’s identity, we get (after a change of variables
X+ 1v+—x), with D°=D\T,

f f 2%, v, 1) log[fod (x, v, t)/E(v)] dx dv

Jpo

f J FBI(x, v) log[ F2/(x, v)/E(v)] dx dv

o]
L

= [K(x, V' =) f2(x, v, 1) — K(X, v > V') f27 (X, v,7)]
0vD VJV

j 77 (%, v, 7) log[ £24 (x, v, 1)/E(v)] |nv| do dv dt

j nv>0
j | rmdao v 0 loglf7d (x, v, TVEM)] Invl do dv de

ny <0

x {1+log[ f77 (x,v,T)/E(V)]} dx dvdv dt

Here
1/]<fn+1(x7 V, f)/E(V)<p+1
SO

|10g(fn+l/E)| <10g1+10g(p+ 1)

for all ne N. Using this inequality together with the assumptions (1.32)
and the dominated convergence theorem, when n — oo, we arrive at the
following equation for f”/=1lim, , . f7/ (with the boundary integrals on
the right-hand side):

( 0 J 1P, v, 1) log[fP(x, v, 1)/E(v)] dx dv
- f j F2I(x, v) log[ F24(x, v)/E(v)] dx dv
DOYvy

= jo[ Lf f [K(x, V' =) f7/(x, ¥, 1) — K(X, v > V') fPI(%,V, 1)]

Vv

x {1 +log[ f77(x, v, 1)/E(v)]} dx dv av' dr

—fof fyf””(x, v, 1) log[f7/(x, v, T)/E(v)] - (nv) do dv dr  (2.12)
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Here the first term, i.e., the collision integral, on the right-hand side can be
written, after a change of variables vi—» v, v'+> v and using the detailed
balance relation (1.27),

%fo J I Ry =) 2 v ) = Ko v ) £ v )]

x {log[/*/(x, v, T)/E(v)]
—log[ f7/(x, v/, t)/E(v')]} dx dv dv' dr

= %JOI J'D fV JV K(x,v-ov) E(v)

x [fP(x, V', T E(V') — fPI(x, v, T)/E(V)]
x {log [ f7/(x, v, T)/E(V)]
—log[f7/(x, V', T)/E(V')] dx dv dv' dr

= [ Netrr e ae

Furthermore, in the second term, the boundary integral, on the right-hand
side of (2.12) we transform I” as follows, writing f(v) for f7/(x, v, t) and
using (0.3), (0.6):

P(x. €)= = f(¥)logLf(v)/E(v)](av) dy
=[  JO)1ogLf(VY/EM)] Inv] dv
= | SO logLAYYER)] v dv

Olog[f(V)/E(V)]f R(V' =) |ov'| f(v') dv' dv

nv' >0

J.nv<0

R(V' = v)dv f SO log[f(V)/E(NV)] |nv'| dv’

ny' >0

=H R(Y —v) Inv'| f(v'){log[ f(v)/E(v)]

nv <0
nv' >0

— log[/(V')/E(v')]} dv dv’
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Changing variables v'+— —v, vi— —v' and using the detailed balance
relation (1.30), we get

Ib=” R(—=v— —v) |nv| f(—v)

f(=v) J(=v) :
[or By e v

1 o e £ [0S
=2 ”.w,<oo Ry’ = v) o] £v) [E(v) E(v’)}
fv) ) :
X |:10g m—)—log m:| dv dv

Then we get, by integration [cf. (2.6)], that |~ I°(x, t) do = N%.(f”/)(z), so
proposition (2.10) holds.

Now, continuing the proof of Theorem 2.1, we will first let j — oo, and
then p — co0. By the following inequalities, holding for all j,

0< ™/ log* (f"//E)<(p+1)log(p+1)-E 2.13)
0< /" log=(f*//E)<[1+ (p+1)log(p+1)]-E .

and the dominated convergence theorem, it follows for f”=1lim;_ , f7/
that

| s7108=(s71E) dxcdv = lim U J 177 log* (f*/|E) dxdv]

Do
sO
He(f7)(t)= lim Hg(f"/)(1) exists for 1 >0
j—o oo
Also
He(F§)= lim Hg(F5/) (2.14)
Jj—

For p— o0, use Fatou’s lemma with the nonnegative function $7
Lcf. (27)],

SP(x, v, t)=f7(x, v, 1) log[ f7(x, v, t)/E(¥)] — fP(x, v, ) + E(v) =0
Then
JOJ lim S°(x,v, t)dxdv< lim 1nfU f SP(x, v, t)dx dv:l

Vp—>w P>
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so, with f'=1lim, , , /%,
| Uflog(f1E)~f + EYdx dv

< lim inf j 0 j [f7 log(f?/E) — f” + E] dx dv

pP— 0

— lim inf UD J f7log(f7/E) dx dv}

p—>®

— lim fof fpdxdv+j

p—oowpliy Do

j Edx dv
y

where, by monotone convergence,

lim Dofyfp dx arv=jD0 fodx dv

Then
JDO fyf log(f/E) dx dv < lim inf JDO j f7log(f7/E) dx dy
ie.
HE(f)(l)<1ipIIlglfHE(f")(l), teR, (2.15)
with

f=fx,v,t)= lim f7?(x,v,t)

p O
Furthermore, by monotone and dominated convergence,

lim H(F2)=H(F,) < o (2.16)

po®
because

0< Filog*(F§/EY< Fylog™ (Fo/E)

0< Fflog (F/E)K Fylog* (Fo/E)+ E

Now we also use Fatou’s lemma for the two terms on the right-hand
side of (2.10), when p, j — oo, These are integrals of nonpositive functions
[cf. (2.5) and (2.6)], so we get
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hmsupf Ne(f29)( r)dr<f N {f)z)dr

[ Aads]

2.17)
lim sup | N3(/)(e) de < | Np(/)(o) de

pJj—®

where /= f(x,v, f)=1lim, , , . [?/(x, v, 1).
Summarizing, we find, by (2.10) and (2.14)-(2.17), that

Hy(f){t)— Hp(F)
< liminf H(f*)(1)— lim Hg(F§')

Do 0 p.j—

< lim sup f[ N(f77)(z) dr + lim sup jt NE(fP/)r)dr
0

p.j—oo 70 py— o
< [ NeH@ de+ [ No()(e) de <0
a 0

and the theorem follows. |}

Remark. Using the notation (2.2) for the boundary term, we find
that

L)) = =| NE(/)0) dr

Then our H-theorem, Theorem 2.1, can be written as follows:

HA/ )0+ B0 < He(Fo) + | Np(f)(e) de

The results in this section can also be formulated in the following way.

Corollary 2.2. 1If the assumptions of Theorem 2.1 are satisfied for
120, then for 01, <4,

H D) < He(N)+ | Neh ey de+ | Nuf ) de

Le.,

HE(F)E) + HE ()0 < Hel D)+ HR N0+ [ NelF)(e)

3. ON HIGHER MOMENTS IN THE CUTOFF CASE

This section uses the form (0.9) for the collision term and studies some
interactions including inverse kth power forces. First we get a theorem
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about local boundedness in time for higher moments of the solution from
Section 1, under some assumptions, which include both soft and hard colli-
sion potentials. Then, under further assumptions, which include the case of
hard potentials, we get a result about global boundedness in time for
higher moments. The space domain D is here supposed to be compact (cf.
Sections 0 and 5).

Notation. Given ¢>0, r> 1, define the function #,,: R, >R, as
follows:

(1 +v2)%2, R EE|

hq,r(v)={ (3.1)

const, r<v< o

and specify 4, , on (r—1, r), so that its first-order derivative is continuous
on R, and decreasing on (r—1,r). (Here we use v=|v|, etc.,, for the
absolute value of the velocity v, etc.)

The following proposition holds for local boundedness in time for
moments of our mild solution.

Proposition 3.1. Let B(6, w) be continuous for 0 <8 < n/2, w>0.
Suppose there exist constants Cz and A with 0 <4 <2, such that (for all
v, v, eV)

/2 .
j wcos 0 B(0, w) df < Cy(l +w), w=|v—v, (3.2)
0]

Assume there exists a constant C such that

qo, A3

f (L4v, P rmta-Dyxy ydv,<C, ,, xeD  (33)

v
Suppose that the boundary function R in (0.3) satisfies
R(x,v—-v')=0, v'>v, v,vVeV, xel (3.4)
(representing a “nonheating boundary”). If
(14 0*)"? Fy(x,v)e LL (D x V)

then the mild solution f (given in Theorem 1.3) to the linear Boltzmann
equation with (general) boundary conditions satisfies

jf (14 02)72 f(x, v, t)dxdvsef“j j (1+02)92 Fo(x,v)dx dv  (3.5)

DYy DYy

for 0 < g <q,, some constant 4, and all 7> 0.
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Proof. Start with the iterates {f,},"_,, defining f=lim, ,, f,, and
use [cf. (1.20)]

DL+ 19,3 014 L+ 13,9 fx 100, )
:f KX+ 1%,V V) fo_ (X + 1V, V', 1) dV’ (3.6)
Vv

where all terms belong to L'(R* x R*x [0, T]), T>0 (cf. Section 1). Then,
using Lemma 1.2 and multiplying (3.6) with the bounded function £, (v)
[cf. (3.1)], we get

d
Uy (0) fx 1%, %, 1))
< j hy (0) KX+ 19,V = V) f(X+ 1V, ¥, 1) dV'
1 4
—h, (V) L(x+1v, V) f(x+1v,v, 1)

Integration over R* x R®x [0, T'], using a Green’s identity and a change of
variables, gives.

jbjth,,(u)fn(x,v, z)dxdv—j j h, () Fol%, v) dx dv
+j0 L jV h, (0) f,(X, v, T)(0V) do dv dr

< j J f f Lhy (V) —h, (0)] K(x,v, > V') f,(x,v, 1) dx dvdv dt
OYDYVYyYy
(3.7)
after some further changes of variables and use of (1.2) for the collision
term on the right-hand side. The collision integral in (3.7) can also be
written

H f f f —hg (V)% v,) B(O, w) f(X, v, T) dO dl dx dv dv,

Writing the boundary term in (3.7) on the right-hand side, we get, by (0.3),
(0.6), and (3.4), that

_f f J hy (v) fu(X, v, T)(nv) do dv dr

=[0I ~ g (0)]

av’ <0
nv>0

XR(x,v— V') f.(x,v,7) Inv| do dvdv dr <0
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Then
jD jV hy (1) £ul(%, v, 1) dx dv — fD L h, (v) Fo(X, v) dx dv

<[ L1 T v

Veves

x B0, w) f,(x, v, 1) d0 d{ dx dv dv, dr (3.8)
where, for v’ >v (by the construction of 4, ,),
o 0) = By (0) S T1 (0)2172 = (1 4 02)77

Here we use the following essential inequality, which holds for the
velocities in a binary collision?:

[1+ ()17 — (1 4+ v°)%2 < gK, cos 0 w(l +p,)mx(B9 = (] 4 p2)a=2)2
(3.9)

for some constant K.
Using this together with (3.2) and (3.3), we find that the right-hand
side of (3.8) is less than

qK; L: JD JV jV f:n L)n/z wcos 6 B(6, w)(1 + v, )mxta=1)

X (%, v )(1 4+ 02)@= 272
XfX, v, t)dx dvdv, do d{ dt
t
<2an1CB22J J Jv j (1+v*);'+m"“‘(l’q“”zﬁ(x,v*)(1+vz)("+’:’2)/2
0YDYVYY
X fux, v, 1)y dx dvdv, dr
<8an1CBCquJ f (1402)9+ =22 £ (x v 1) dx dv dr
0OYDvYYy

Here we also used that 1 +w< (1 +v,)-2(1 +v%)"2
Let 6 =min(g, 2— 4)>0. Then, by (3.8), when r — oo,

JD j,, (1+ %) f(x, v, 1) dx dv

< j (14 0%)%7 Fo(x, v) dx dv

DYV

t
+AJ .[ J (140922 f(x, v, 1) dx dv dr
0OvYDVYYy
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<j j (1 + 02)72 Fy(x, v) dx dv
DYV

+AH [ @+on f v ) axdv e
DYV

Y0
with some constant 4 (=8ngK,CpC, ;). Now using a Gronwall lemma,

we get

Jﬁ J (L+02)72 £ (x, v, t)dxdvée“”f { (1 4+ 0372 Fy(x, v) dx dv
DYy

DYV

Let n— oo and use that £, ~ f. Then (3.5) follows, giving local boundedness
in time for soft and hard potentials, 0<1<2. |

Remark. The assumption (3.4) about “nonheating boundary” is
satisfied, for instance, by the specular boundary condition.

The rest of this section is concerned with global boundedness in time
for hard potentials in the collision term.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied with

1 <4 <2. Moreover, suppose there are constants Cz>0 and C,> 0 such
that

/2 — .
j w cos? 8 B(O, w) df = C zw* (3.10)
0
and
jw(x,v*)dv*>co, xeD\I' (3.11)
14

Assume that the function E(v) in the detailed balance relations (1.27) and
(1.30) with (1.31) satisfies

(1+0") K(x,vo>V)EWV)e L' (DxVxV)
(14+0*)" 2 R(x,v—o V') |nv| EV)e L' (I'x Vx V)

Then the mild solution f (given in Theorem 1.3) satisfies
f f (14 02)%2 f(x, v, 1) dx dngqJ f (140272 Fo(x, v)dx dv  (3.13)
DYy DYV

for 0 < ¢ <gq,, some constant 4,, and all 1> 0.
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Proof. Start with a cutoff in the initial value [cf. (1.35)]
FE(x,v)=min(Fy(x, V), p-E(v)), xeD, veV, p=1,2,3.  (314)
and construct (as in Section 1) the increasing sequence of iterates { f2}=
with limit

SPx, v, 1) = lim f2(x,v, 1)< p- E(v) (3.15)
Now we use for 2 Eq. (3.6), which, after a multiplication with the bounded

function A,, [cf (3.1)] and integration along the characteristics, gives
[cf. also (0.3), (0.6), (1.2), (1.14), and (3.7)]

[ [ bt fr0c vy axdv— [ | g (0) Fiv) dx av
- Jot .[D L,Lhw("/)K(& v v) fP_(x,v,t)dxdvdy dt
- JO JD J ; f b 0) KO,V = V) f1(x, v, 1) dx dv dv' de

+JJH o) R, V=) f2 (X, v, 1) |nv] dodvdv' dt

nv’ <O
nv >0

t

—f f ﬂ h, (0) R(X, V> V') f2(x, v, 7) |v| do dv dv’ dr
OYIrYYnv <0
nyv>0

Here, letting n — oo and then r — co, using (3.1), (3.13), (3.14), and the
dominated convergence theorem, we get the following proposition:

jj(1+vz)q/2fp(x,v, 1) dx dv
DYV

_j j (140292 F5(x, v) dx dv

DYV
=[] i+ er—a vy

x K(x, v V') fP(x,v.1)dx dvdv dr

L A=y

nv' <0
nv>Q

X R(x,vov) fP(x, v, 1) Inv| do dv dv' dt (3.16)
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Taking the derivative with respect to ¢ and using (3.4) gives

%U JV“ +02)?2 f7(x, v, 1) dx dv]
< j”D JVL {[1+ @)1= (1+v°)*?}
x K(x,v—>v') f7(x, v, 1) dx dv dv’
L e ey

X B0, w)y(x, v} fP(x, v, t) dx dvdv, di df (3.17)

Here we use the following essential inequality for the velocities in a binary
collision (cf. Proposition 1.2 in ref. 12):

[+ )17 = (1 +0%)"?
c < Kyweos 0 (14o,)mxha=1 (1 4 p2)e-272

— K,wcos? 8 (1 +0v?)le-102 (3.18)

with some positive constants K;, K,>0. Then it follows, by (3.2)-(3.4),
(3.10)—(3.12), (3.17), and (3.18) and the elementary inequalities‘'?

T+w<2(1+ o, )(1+07)"
—w < (1+v,) =2 741 + 03, 1<i<2
that

%[f f (1 +0%)72 f7(x, v, I)dxdv]

2n /2
_ max(i,g—1)
< K, jD HVL jo wcos 0 B(O, w)(1 +p, )™ 4=V y(x, v, )
X (1+0) =72 fr(x, v, 1) dx dv dv, df df
2n pm/2
_ 2
K, L) LJVJO fo wcos® 6 B(B, w) y(x, v,)

x(14+v?) D2 fr(x, v, tydx dvdv, db di
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< 21K, Cpy u jy(uwy‘ (140, )msa =D y(x v}

v

X (14+02) 9272 fr(x, v, t)dx dv dv,

—2mK,Cy fD jy L why(x, v, )(1+ 02 D2 fo(x, v, 1) dx dv dv,

IN

2K, C 2,1 1+L’ 4+ max(1l,g— 1)
G2t ] [ ] o)
X (X, v )L+ ) ITA 22 fr(x y, 1) dx dv dv,

+2n1<2c‘iaf j [ (4002 P v )+ V2 2 v, 1) dx dv v,
DYVv©Yy
manZCle—/‘j j f Yix, v, )(L+02) @A~ 02 fr(x v, 1) dx dv dv,
DYV Yy
< 81K, C,C,, j (14072202 £2(x v 1) dx dv
DYy
+27ZK255C%,2J f (1 + v =02 fr(x v, tydx dy
DYV

— 7K, C5Co jD [V (14 02)+ 2= D2 f2(x, v, 1) dx dv

Let § =min(g, 2—4) for g>0, 1 <A<2, and let

M,(t)= jD jy (140292 f2(x, v, £) dx dv, 1R, (3.19)

Then it follows that
My (1) <a, M, _s(t)—aoM (1) (3.20)

t

with positive constants a,, a,>0. Multiplying (3.20) with e® and inte-

grating gives

e M (1) — M,(0)<a, j M, _ (s) e ds
0
So, if sup, i, M,_s(t)<M,_;, then

I3
Mq([)qu(O)e““()‘_l_aqu-& e(s‘*‘)aods
0

< M (0) + (ay/ao) T, (3.21)
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But M,(z) is globally bounded [cf. (1.17)], so recursively we find by (3.21)
that Ms(t), M,s(t),..., M () all are globally bounded in time. Furthermore,
if M, s(t1)<A, ;M, 50), then by (3.19) and (3.21)

a a
M,(1) < M (0) +a—1Aq,5Mq,5(0) < (1 +a—1Aq*5> M.(0)
Q 0

0 (3.13) holds for /= f*.
Finally, letting p — oo, using F§ ~F,, f?7f, then the result (3.13)
follows for f'= f(x, v, 1).

Remark. The results in Theorem 3.2, giving global boundedness in
time for higher moments, hold (among others) for inverse kth power forces
with 2=vy+1, where y=(k—35)/(k—1), if k=5 [cf (0.10)], and with
specular reflection at the boundary.

4. ['-SOLUTIONS IN THE CASE OF INFINITE-RANGE FORCES
WITHOUT CUTOFF

In this section the linear Boltzmann equation is considered without
cutoff in the collision term, i.e., including infinite-range forces, and written
in the following integral form, which can formally be derived from Eq. (0.1)
with (0.2), (0.3), and (0.9)%):

j J g(x, v, 1) f(x, v, ) dx dv

—jf (x,v,0) Fo(x,v) dx dv
! 0
+J j J v-grad, g(x, v, s)+— g(x, v, s) | fIx, v, s} dx dv ds
0Dy 0s

+J J J j J. [g(x, v, s)—g(x, v, )] ¥(x, v,)
xB(0, w) f(x,v,s)d8 dl dv, dx dvds (4.1)

for all test functions ge C}*. Here

Cy*=1{geC"*: g(x,v,1)=0,xe'=0D}
where
Ch*={geC{DxVx[0,0)): gl =sup |g(x,v, 1)

i
+ sup ‘E g(x, v, t)| +sup |grad, g(x, v, t)|

+sup |grad, g(x, v, )] < oo}

822/59/1-2-28
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The space domain D is here (as in Sections 1-3) supposed to be compact
and (strictly) convex. The mathematical problems in the noncutoff case
come from the nonintegrability of the function B(6, w), when 8 — /2 —
(cf. Section 0).

In refs. 11 and 12, Eq. (4.1) was considered for the periodic boundary
case, with du instead of f'dx dv, to get measure solutions u(x, v, 7). We will
now use the H-theorem from Section 2 to get L'-solutions of Eq. (4.1) by
a method analogous to ref. 2 for the nonlinear, space-homogeneous case. In
ref. 13, T used this method to get L*-solutions to (4.1) in the periodic
boundary case. For the given purpose I formulate the following essential
lemma.

Lemma 4.1. Let {f,}* , be a sequence of L', (D x V)-functions,
such that for some x,> 0 there is a constant C,,

Jj(1+u)K°f,,(x,v)dxdv<cK0, neN (4.2)

and such that for some function E(v)>0 with [log E(v)]/(1+v)*e L®(V)
for some K < k,, there is a constant Cg,

j j fa(x, V) log[ f(x, V)/E(v)] dx dv< Cp, neN (4.3)

Then the sequence {f,}° contains a subsequence {f,}2, converging
weakly to a function fe L' (D x V), such that

J— o

lim UD Jyf,,/(x, v) g(x, v) dx dv] = jD L/f(x, V) g(x, V) dx dv (44)

if g(x, v)/(1+0)<eL*®(DxV),0<Kk <Ky

Proof. (Cf. Lemma 3.1 in ref. 1 or Lemma 2 in ref 2.) The proof,
which is based essentially on the well-known Dunford-Pettis’ theorem, is
analogous to that given by Arkeryd") and is omitted here. ||

The main result of this section is the following theorem about the
existence of L!-solutions to Eq. (4.1). This theorem is an improvement of
Theorems 2.1 and 2.2 in ref. 11 and Theorem 2.1 in ref. 12, which deal with
the periodic boundary case.

Theorem 4.2, Let B(6, w) be continuous for 0<8<n/2, w>0.
Suppose there exist constants Cp and A, with 0 <A <2, such that (for all
v,v.eV)

/2
f weos 0 B0, w)dO< Cy(l+w),  w=|v—v,| (4.5)
0
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and suppose

/2
fwcoseB(e,w)dez(O(l) when w — 0 (4.6)
0

Let the cutoff angle (R, w) increase with the cutoff radius R, and let

Y(x, v,) = X(x) D(v,) (4.7)
with X(x)e LF(D) and &(v, ) measurable on V. Assume there is a constant
C,,.; such that

[ (4 rmto Dy v, ) dv, < Cpp s XeDAT (48)
Vv
(1+0)? Fy(x,v)e L' . (DxV) forsome g¢,>7 ¢o=1 (49)
Let

Fo(x, v) log[Fo(x, v)/E(v)]e L'(Dx V) (4.10)
where E(v)> 0, with
[log E(v)]/(1+v)7e L™(V) forsome §<gq,
satisfy the detailed balance relations
Y(x, vy) E(v) =y(x, vy) E(V') (4.11)
and
[nv] R(x, v—v') E(v)=[nv| R(x, —V = —v) E(—V')
with
R(x,v—ov)=0, v'>v, v,v,elV {(4.12)

Then there exists (for all 7>0) a nonnegative solution f=
S(x,v,2)e L' (D x V) to the linear, space-inhomogeneous Boltzmann equa-
tion in the integral form (4.1). The solution satisfies

fD fyf(x, v, 1) dx dv=jD fVFO(x,v)dx dv (4.13)
and

Uy(uuz)wf(x,v, z)dxdv<eaq'f j (1+02)92 Fo(x, v) dx dv  (4.14)

DYV
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for 0 < g<gq, (with some constant a,), and for 0<¢< T < oo, where T is
arbitrary.

Moreover, for 1 <4< 2, if there are constants C>0 and Cy >0 such
that

j:/z wcos® 0 B(O, w) d = C yw? (4.15)

and
Ll//(x, v,)dv,>Co,  XED\I (4.16)

then

ff (1+02)72 f(x, v, t)dxa’v<AqJ J (1+02) Fy(x, v) dx dv  (4.17)
DYV DYV

for 0 < ¢ < g, (with some constant 4,), and for all > 0.

Proof. (Cf. the proof of Theorem 3 in ref. 2.) Let {f"(x, v, )}, be
a sequence of mild solutions to the linear Boltzmann equation (0.1) with
(0.2), (0.3), and (0.9) with cutoff radius R=n, S=S, (cf. Theorems 1.3 and
1.4). Then one finds, by straightforward calculations analogous to those in
the previous section, that the functions f” = f"(x, v, t) satisfy the integral
equation (4.1). By the H-theorem, Theorem 2.1, and Lemmad4.l, we
can select a subsequence {f™}7., converging weakly to a function
feL' (DxV) for all rational ¢, with 0<t<T< o0 if 0<Ai<1 and with
120 if 1<Ai<?2 [cf Theorems 3.1 and 3.2 to get (4.2)]. But for ge Cy*™
the sequence |, [, /"(x, v, t) g(X, v, ) dx dv is equicontinuous in ¢ (cf. the
proof of Theorem 2.1 in ref. 11), and then the subsequence { "/} converges
weakly to a function fe L', (D x V) for all ¢ (with 0<7< T <0 and 1 >0,
respectively). One also finds that the function f=w—lim;_, ., f™ satisfies
the integral equation (4.1) (cf. the proof of Theorem 2.1 in ref. 11 when
0< /<1, and Theorem 2.1 in ref. 12 when 1 < 4 < 2). Concerning local and
global boundedness of higher moments, for 0< A< 2 and 1 <4 <2, respec-
tively, use Proposition 3.1 with inequality (3.5) and Theorem 3.2 with
(3.13), which hold for /™ and then also for f=w—lim,_ . f". This com-
pletes the proof of Theorem 4.2. ||

We will now in two corollaries study sorme special cases of physical
interest, the first concerning local Maxwellian distribution functions y, and
the second concerning inverse kth power forces for the interactions.
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Corollary 4.3. Assume B(f,w), H(R, w), and R(x,v—V') as in
Theorem 4.2. Suppose

lp(xa V*) = X(X) . exp( —-cm*vi)
and

E(v)=a exp(—cmv?)

with continuous function X(x)>0 and positive constants 4, ¢, m,, and m,
such that the detailed balance relation (4.11) holds. If (1+0)% Fy(x,v)e
L' (D x V) for some q,> 2, and Fy(x, v) log Fy(x, v)e L'(D x V), then (for
t>0) there exists a solution f(x, v, 1)e L' (D x V) to the linear Boltzmann
equation in the integral form (4.1) with infinite-range forces. The solution
satisfies (4.13) and (4.14) for 0< A <2, and also (4.17), if 1 <A< 2.

Proof. One finds that

= Fylog Fy+ (cmv* —log a) Foe L'(D x V)

and the corollary follows from Theorem 4.2. J

Corollary 4.4. Assume in the case of infinite-range, inverse kth
power forces with k>3 that y, F,, and R satisfy (4.7)-(4.12) and (4.16)
with A=(2k—6)/(k—1). Then (for 7>0) there exists a solution
f(x,v,t)e L' (D x V) to the integral equation (4.1). The solution conserves
mass. Higher moments

f j (14 v%)72 f(x, v, £) dx dv

DYV
are globally bounded in time and satisfy (4.17) if k = 5, respectively locally
bounded (ie., for 0<t<T<oo, T arbitrary) with (4.14) if 3<k<35,
provided they exist initially.

Proof. See (0.10) with y=41—1, and use Theorem 4.2. ]

Finally we will formulate an H-theorem for our L'-solutions in the
infinite-range case, following a method used by Elmroth!” for the non-
linear, space-homogeneous equation. We start with the following useful
lemma with the H-functional H defined in (2.1).

Lemma 4.5. Let {f,}~ | be a sequence of functions in L' (D x V)
with f,log f,e L'(Dx V). If f, tends to f weakly in L' (DxV), and
/. log E converges weakly to flog E, then

Hp(f)<liminf He(f,)
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Proof. (Cf. Theorem 13 in ref. 8 or Theorem 6 in ref. 7.) Since
S log(f,/E)Y=f,log f,,— f,log E, then the lemma is an immediate conse-
quence of the following proposition with ¢(f)= flog f.

Proposition A.®® Let ¢: R— R be a measurable function. Define,
for Q =R*x R? a functional on L?, 1< p < oo, by

HO(f, @)= || o(/(x v) dxdv

Then, for each measurable Q < R3>x R®, H? is lower semicontinuous with
respect to weak L?-convergence if and only if ¢ is a convex function.

Then we get the following version of an H-theorem in the infinite-
range case.

Theorem 4.6. Suppose f=f(x,v,?) is a solution to the linear
Boltzmann equation in integral form (4.1) given by Theorem 4.2. Then the
relative H-functional H . (f)(¢) exists and satisfies (for > 0)

Hyp(f)(1) < He(Fy)

Proof. We start from the cutoff case with cutoff radius R=n. By
Theorem 2.1

He(f")0) < He(Fo)+ | INS(/")0) + N&(U)0)] e < Ho(Fy)

Then by Theorem 4.2 (and Lemma4.1) there exists a subsequence
{fm 9.1, such that f=w—1lim;_ . f" exists, and, by Lemma 4.5,

He(f)(1) <1in3 inf [H (/") ()] < Hp(Fo) 1
Remark. Actually, we get a slightly better result,
HE(f)(1) < Hy(Fo) +lim gnf{ [ IV @) + M) (0] dr}

with Nz <0 and N4 <0 defined in (2.5), (2.6).

5. THE CASE OF AN UNBOUNDED SPACE DOMAIN

In this section we will discuss generalizations of the results from
Sections 1-4 to an unbounded, (strictly) convex domain D.
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The existence theorem, Theorem 1.3 in Section 1, holds also for
unbounded D, using the same construction of solution by iterates (1.14),
where 1, = 1,(x, v) = oo, if the right-hand side of (1.7) is not defined. To get
an analogy of the detailed balance relation (1.27), (1.29), we assume that
there exists a function E = E,(x, v)= Eg(x — tv, v) >0, such that

K(x+1tv,vo V) Ey(x,v)=K(X+tv,V > V) Ej(x, V') (5.1)
or
(X +1v,v,) Eo(x, V)= y(x+tv, vy) Eo(x, V') (5.2)
Then
(QE)(x+tv, v, 1)=0
and

d d
- E(x+19,¥)) =7 (Eo(x ¥) =0

so E= E,(x, v) satisfies Eq. (0.1).
For the boundary we assume that the same detailed balance relation
(1.30) holds as in Sections 1-4, but now with

Eb(x,v)= lim Eo(x—sv,v), xel (V) (5.3)

5s—>0+

Then E=E,(x,v) is a (collision invariant) solution to the linear
Boltzmann equation in the strong form (0.1) with (0.2) and (0.3), and also
to the equation in the mild form (1.9) and in the exponential form (1.10),
if Fo(x,v)= Ey(x, v). Here we assume that

Eo(x,v)e L (Dx V)

A physically interesting case is given by locally Maxwellian functions
E.(x, v), where

Ey(x, v)=a exp(— cmv* — bx?)
with constants a, b, ¢ >0, if
Y(x, v,) = X(x) exp(—cm, v3)

The statements in Theorem 1.4 about mass conservation and unique-
ness hold if

K(x+1tv,v>V) Eyx,v)e L' (Dx Vx V)
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and
nv| Eg(x, v)e L (I'x V)
For the proof, use that the iterates satisfy
foAx+1v, v, 1)< p-Ey(X, V), neN
if
Fp(x, v)=min(Fy(x, v), pEy(x, v}), p=1273, .

The H-theorem, Theorem 2.1 in Section 2, holds also for an unboun-

ded domain D, with the function Ey(x, v) in (2.5) and (2.6) instead of E(v),

and Ey(x,v’) instead of E(v'), after a change of variables x+ x + fv. For
the proof use the functions [cf. (2.11a)]

) 1
SEIX, v, 1) =fE(x, v, 1)+~ E(x, V), neN, p,j=1,273, ..
J

The local boundedness proposition about higher moments, Proposi-
tion 3.1 in Section 3, has an analogy for an unbounded domain D,

f f (1+x2+0%)72f(x,v, t) dx dv
DYV
<ef“f j (14 x>+ 02)72 Fy(x, v) dX dv
DYV

for 0 < ¢ < ¢, and some constant A, if F, satisfies

(14x2 4+ 02)%2 Fo(x,v)e L' (Dx V) (54)

and if the other assumptions in Proposition 3.1 are satisfied. For a proof,
start with (3.6) and multiply by (1 +v> + |x + 7v|?)?* with a suitable cutoff
[cf. h,,in (3.1)].

In the noncutoff case, including infinite-range forces (cf. Section 4),
there exist L'-solutions to the integral equation (4.1) even in the case of
unbounded space domain D (cf. Theorem 4.2). First we get an analogy to
Lemma 4.1, by changing (1 +v) to (1 +x*+v?)"? in (4.1)~(4.4) and using
a function E(x, v) instead of E(v) in (4.3). Then we can prove a generaliza-
tion of Theorem 4.2 to unbounded domains D, including existence, mass
conservation, and local boundedness of higher moments for both soft and
hard collision potentials, 0 <A <2.



Linear Boltzmann Equation 439

Theorem 5.1. Let the assumptions on B, §, and ¢ in Theorem 4.2
be satisfied [cf. (4.5)-(4.8)], together with (5.4) for some g, > 4, g, = 1. Let

Fo(x, v)log[Fo(x, v)/Eo(x, V) 1e LY (D x V)
where Ey(x, v) >0 with
{log[Eo(x, )1}/ (1 + x>+ v2)"*e L*(Dx V)

for some §<gq,, and Ey(x, v) satisfies the detailed balance relations (5.1)
and (1.30) with (5.3), and let (4.12) hold.

Then there exists (for all #>0) a nonnegative solution f'= f(x, v, t) &
L' (Dx V) to the linear, space-inhomogeneous Boltzmann equation in
integral form (4.1) with unbounded, (strictly) convex body D. The solution
satisfies

J J f(X,V,t)dxdv=f j Fo(x, v) dx dv

and

f j (14 x>+ 0772 f(x, v, 1) dx dv

DYV

< eA’J f (1 4+ x>+ )92 Fo(x, v) dx dv
DYV

for 0 <g<gq, (with some constant 4), and for 0 <1< T< o0, where T is
arbitrary.

Proof. Use the generalization of Lemma 4.1 mentioned above, and
essentially the same technique as in the proof of Theorem 4.2. §

Finally, we can get natural analogies to the physically interesting
cases, Corollary 4.3 and 4.4, and also get an H-theorem for unbounded
domains in the noncutoff case (cf. Theorem 4.6).
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